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A closed equation is obtained for the function describing the length scale dis- 
tribution of the turbulent velocity fluctuation energy in an isotropic flow of 
dilute linear high-molecular polymer solution. 

Introduction 

The following is an attempt to construct a theoretical model of the mechanism of action 
of polymer additives on the spectral structure of a turbulent flow. We have chosen for study 
the function Pt(r), which describes the length scale distribution of the velocity fluctuation 
energy in an isotropic turbulent flow. 

The presence of polymer additives modifies the shape of the two-point characteristics, 
correlation functions or spectra, as compared with that observed in an ordinary Newtonian 
fluid, as directly or indirectly indicated by the results of a series of experimental stud- 
ies (see, e.g., [1-6]). The changes in these functions are attributable to the selective ac- 
tion of small amounts of added polymer on the velocity fluctuations with different length and 
time scales. 

In deriving a closed equation for some two-point function in which the effect of poly- 
mer additives is to be taken into account it is necessary to have a clear qualitative picture 
of the mechanism of interaction of the turbulent velocity fluctuations and the polymer molecules 
dissolved in the fluid. Here, it is proposed to use Lumley's mechanism [7, 8]. The essence 
of this mechanism, which we will use for writing the initial dynamical equation for the veloc- 
ity field, can be explained briefly as follows. 

If the Reynolds number is high enough, there will exist in the turbulent flow a fluc- 
tuating field of the velocity gradient tensor Z, which can be represented in the form of a 

sum of symmetric S and antisymmetric ~ parts. Here, S is the strain rate tensor, and ~ is 

the vorticity tensor. Each^point of the turbulent flow is characterized by a certain relation 

between the quantities S = ISI and ~ = I~l. When at some point in the flow the relation [7] 

1 
S 2 -- Q~ > -  (i) 

4T~ 

is realized, where T is the characteristic relaxation time of the polymer molecule, the poly- 
mer molecules present at that point are heavily stretched and increase in size and the vis- 
cosity of the fluid increases. (The theoretical and experimental research into the behavior 
of polymer molecules and the corresponding changes in viscosity under various hydrodynamic 
conditions is reviewed in [9].) Thus, the turbulent velocity field "senses" the presence of 
polymer additives at certain random points in the flow where the stretching criterion (i) is 
satisfied through the sharp increase in the viscosity at those points. Considering the phys- 
ical significance of the tensors S and ~ it can be said that in a turbulent flow with polymer 
additives the viscosity is selective with respect to the form of the motion: it varies only 
weakly in the presence of rotational motion and at those points at which simple shear (S = ~) 
is realized, and increases sharply when the motion involves tension. This selective change 
in viscosity leads to a marked change in the structure of the turbulent flow - to a restruc- 
turing of the length scale spectrum and the velocity field fluctuation probability distribu- 
tion. As a result of this restructuring the flow must become less dissipative, and maintain- 
ing a given turbulent energy level requires less energy than in the case of a flow without 
polymer additives. This is how the proposed model of the interaction between polymer addi- 
tives and an isotropic turbulent flow and the results of that interaction can be depicted. 
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At the wall a similar mechanism leads to drag reduction [7, 8]. This idea is used as the ba- 
sis for phenomenological models of turbulence that take the Toms effect into account [i0]. 

We have attempted to derive analytically an expression for the term that takes the ef- 
fect of polymer additives into account in the expression for the function Pt(r) in the case 
of an isotropic flow with polymer molecules uniformly distributed in space. The derivation 
is based on the Navier-Stokes equation with a viscosity coefficient v(x) that depends on 

the relation between S and ~ in accordance with the formula 

[ ' ] $ ( x )  v + v ~ o  S~ (x) - -  n~ (x) - -  4T---V ' ( 2 )  

Here, ~ is the viscosity of the solvent, Vp is the longitudinal viscosity of the solution, 

i.e., the viscosity at those points at which the polymer molecules are stretched; 0(~) is 
the Heaviside function; and 

ii I [ 1 (x) = T Oxn Ox----"~. ' T Ox~ OXr~ " ( 3 ) 

The viscosity coefficient model (2) ensures the inclusion of an anomalously high vis- 
cosity force only at those points of the flow at which the criterion (i) is satisfied. In 
this model the properties of the solution are expressed in terms of two parameters: Vp and T, 
which are different for different polymer solutions. The concentration of the polymer-mole- 
cules in the solution exerts an effect only through the viscosity coefficient Vp. 

Structure of the Equation for Pt(r) in the Case of a Turbulent Flow with Polymer Additives 

The function Pt(r) is related with the longitudinal velocity field correlation func- 
tion B(r, t) by the equation [ii] 

0 
- - - - B ( r ,  t). (4) P, (r)= Or 

The physical significance of the function Pt(r) as the length scale distribution of turbu- 
lent fluctuation energy is apparent from the equation 

i P,(r) dr= B(O, t):- -~q(t) ,  (5) 
0 

where q(t) is the average energy of the turbulent velocity fluctuations. 

We will first obtain the equation for the correlation function B(r, t) and then, using 
Eq. (4), go over to the equation for the function Pt(r). As the initial dynamical equations 
we will use the Navier-Stokes equation for the velocity fluctuations, which, when the aver- 
age velocity is equal to zero, has the form: 

Ot ' Oxh p O& ~ Ox~ \ Oxh + Oxi ]J +[i,  i = l ,  2, 3, (6) 

and the incompressibi l i ty  equation for the ve loci ty  f luctuat ions  

0u~ _ 0. ( 7 )  
Ox~ 

In Eq. (6) p is: the pressure fluctuations, 0 is the density of the solution, ~(x) is the kin- 

ematic viscosity coefficient given by (2), and fi is the vector random force field responsible 

for pumping the turbulent energy. The statistical properties of this field must be given. 
We will assume that the field is Gaussian and 6-correlated with respect to time [12]. 

The equation for the correlation tensor Bii(r~ t)=<ui(x)uj(x-~-r)> is derived in the usual 
way [13]. In going over to the equation for the correlation function B(r, t) we take into 
account the fact that in the case of isotropic turbulence in an incompressible fluid the two- 
point correlation tensors of the velocity, and pressure fields are equal to zero, and the sec- 
ond and third order two-point velocity field tensors can be expressed in terms of scalar lon- 
gitudinal correlation functions of the second B(r, t) and third BLLL(r , t) orders, respective- 
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ly. Using corresponding formulas from [13] and taking into account the statistical properties 
of the random force field fi(x,t) [12], we can obtain the following equation for B(r, t): 

( _ )  (o2 4o) 2 (  r2) 
OB(r, t) __ O 4- 4 BLLL(r,t)4-2V -~r2 q--- B(r, t ) - - : v f l ( r ,  t) 4--~-eexp -- . (8)  

at Or ' r r O-r , -L~" 

The last term in (8)  describes the pumping of energy into the turbulent flow, s :is the pumping 
rate, and L is the length scale on which pumping takes place. The term l(r, t) in (8) is gener- 
ated by the second term in expression (2) for the viscosity coefficient 

2 O , 1 aui(x) + au~(x) u~(x4-r) (9) 
I (r, t) = ~ 0  S 2 ( x ) -  Qz (x) 4T 2 O x ~  Ox~ I~=~=0~'=~ 

Ac t ing  on Eq. (8)  by means of  t he  o p e r a t o r  - a / 3 r  and t a k i n g  i n t o  accoun t  t h e  d e f i n i t i o n  ( 4 ) ,  
we o b t a i n  t h e  e q u a t i o n  fo r  t h e  f u n c t i o n  P t ( r ) :  

oPt(r) a ( a + 4 )  ( 0  2 4 0 4] 
Ot Or Or --7- BaLL (r, t) 4- 2v --Or ~ 4- r Or r e Pt (r) -5 

4- % @_r l ( r , t ) 4- 4 r ( @ )  -- ~ exp -- . 
3 L z 

(io) 

In Eq. (i0) the third-order velocity field correlation function BLLL(r, t), which des- 

cribes the turbulent transfer of energy over the different length scales, must be expressed 
in terms of the known function Pt(r). This can be done in the usual way, as in the case of 
an ordinary fluid without additives [14]. Then the equation for Pt(r) takes the form: 

O a- P~(r) 4 - - - e  exp ~-v ,  (r, t). OPt(r____~) = 0_0_ 2 v + 2 ? ~ V r P t ( 7 ) ~  I Or ' 3 L ~ \ L 2 ) " 0," (11) 
Ot Or o 

Here, ~ = 0.24 is a constant which can be related to the constant in Kolmogoroff's law of 
two-thirds if Eq. (ii) is solved for the case Vp = 0 on the inertial range. 

The function l(r, t) describes the action of the polymer additives on the structure of 
the function Pt(r). The determination of the form of this function is also our principa:l task. 

Relation between the Function I(r, t) and the Distribution Function 

In order to carry out the averaging in expression (9) it is necessary to have the=prob- 
ability distribution function. Expression (9) contains nine velocity derivatives 8ui/Sx], 

determined at the point x, and one velocity component ui, determined at the point x+r: 

Averaging must be carried out only over those realizations of the velocity field which s~tis- 
fy the criterion (I) both at the point x and at the point x~-r. This means that out of the 
entire set of values of u i we will take into account only those that are realized with the 
satisfaction of condition (i) for the acceleration field at the point x~-r. With this taken 
into account, the expression for I(r, t) in terms of the probability distribution function 
can be written in the form: 

~{ Oxj ) ' Ldx~ I du;j [r~:%~,= ~ 

(~12) 

Here, f(c)( ) is the two-point joint probability distribution function of the values of ~ the 
derivatives 8ui/3x j and the velocity component u i' taken subject to satisfaction of the in- 

1 
equality 8'2--Q,'2>4- ~. A prime denotes that the corresponding quantity relates to the point 
x~-r. 

The conditional function f(c)( ) can be represented in the form of an integral of~ the 

([0u/l / Oul 1 Ul! of the values: of unconditional joint probability distribution function f \[Oxj J' [ Ox I J' 
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the derivatives at the points x and x@ r and the velocity component at the point x-i-r :  

I #u~ 1 

f I~ ) 
In accordance with Eqs. (3) we can obtain: 

_ . ( , . -  1 ) 
u~lS '~ ~ ~ . . . .  

4T z 

\ 4T  ~" tax} J 

(13) 

S~ _ _  Q . ~  == aur~ O u . . .  ( 1 4 )  
Ox~ Oxm 

S ,~ _ .o/= aus a.'~ 
Ox'~ Ox/~ (15)  

Using the incompressibility condition (7), we can eliminate one velocity derivative from each 
of expressions (14) and (15) (e.g., 8u~/Sx~ and ~u'~/Sx'~). From this it follows that after 
the substitution of (13) in (12) it is possible to integrate with respect to the variables 
~!iminated, leaving beneath the integral sign a 17-dimensional distribution function. In 
fact, there remain eight acceleration components at each point and one velocity component at 
the point x@r The expression for I(r, t) can be written in the form: 

/ (r ,  t)----2 0 f ( '0 F - - - -  @ F ~=~ . .: , 48  ~ dT z , a ,~9•  {~:}. ~9)d{E~}d{~:}d~o I~.=~=0 (16)  

Here ,  f ! ! ! ! f d { ~ } d { ~ I d  ~9 i s  a 1 7 - d i m e n s i o n a l  i n t e g r a l ,  a n d  {~} =~ {~1, ~9 . . . . .  ~s}, ~9~ {~,.} = {~10, ~[1 . . . .  , ~17} 

a r e  t h e  a rguments  o f  t h e  1 7 - d i m e n s i o n a l  p r o b a b i l i t y  d e n s i t y  f u n c t i o n  (PDF). 

The correspondence between the variables {~i}, {~}, ~9 of the distribution function and 

the components of the derivatives {Sui/Sxj} , {Su'i/Sx'j} and the velocity component u~' can 
be given in the following form: 

The column matrix a k can be defined in terms of the variables $i: 

a h ~  ~ a + ~  (17)  
~s  F g6 

The expressions for F and F in terms of the variables {~i} and {~j} have the form: 

F = ~ + ~ 2  ~ : ~3~ ~5~0 ~ ,  ~ 2 ~ - ~ 1 ~ - 7  -~ - + ( 1 8 )  

The presence of two Heaviside 0 functions in the integrand expression in (16) impose~ a limita- 
tion on the integration domain in the 16-dimensional space of the variables {~i}, {$j}- This 
limitation represents the main difficulty in realizing the integration in (16) for any non- 
trivial choice of the shape of the 17-dimensional distribution function. 

Shape of Two-Point 17-Dimensional PDF and Evaluation of Multidimensional Integral 

In order to realize the integration in (16) it is necessary to make some concrete as- 
sumption concerning the shape of the 17-dimensional two-point PDF. We will assume that it 
is Gaussian. This choice is dictated, above all, by considerations of simplicity. It 
should be notedthat taking the asymmetry of the distribution function into account does not 
make a contribution to l(r, t), since the integrand expression in (16) is even with respect 
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to the integration variables $i- Taking the fourth-order cumulants into account presents 
considerable computational difficulties. In this connection, it is still not clear whether 
in calculating I(r, t) the kurtosis of the PDF has any fundamental significance. Since our 
primary objective was to establish the decrease in turbulent energy dissipation resulting 
from the addition of small amounts of polymer, the choice of a Gaussian PDF should be quite 
adequate. 

The Gaussian 17-dimensional two-point PDF can be defined as follows: 

{ 1 I7 17 } 

"='~=' (19) 
/({~}) = (2~),7/z ol/2fflff2...ql 7 

Here, D is the determinant of the 17 • 17 correlation matrix dik, and dik is the inverse, of 
the correlation matrix rik. The elements of rik are the correlations between the quantiites 
~Um/SX n and ~U'p/SX's the correlations of the quantities 8Um/SX n with each other and the 

quantities 8U'm/SU' n with each other, and the correlations of 8Um/SX n with u' I and 8U'm/SX' n 

with ul'. AltDgether there will be m = 136 correlations amenable to calculation in the ma- 
trix rik. It can be shown that all the matrix elements of rik can be expressed in terms 
of the unknown function Pt(r) and its first and second derivatives with respect to the var- 
iable r. The elements of the inverse matrix can be calculated by Gauss's method [15]. All 
the values of the variance o i needed in (19) can be expressed in terms of the viscosity of 
the solvent ~, the dissipation rate g and the turbulent energy in accordance with the formu- 
las 

~  ~  15v'  ~ q' 

t5v 
- - ,  i = 3 ,  4, 5, 6, 7, 12, 13, 14, 15, 16, 17. 

(20)  

The presence of the viscosity coefficient of the solvent, rather than that of the solution, 
in (20) is attributable to the fact that on the viscous scale interval there is no stretching 
of the polymer molecules and the viscosity remains unchanged. This assertion will be~proved 
by calculating the dependence of the function I(r, t) on the variable r. 

The substitution of the explicit form of the PDF (19) in (16) makes it possibleto re- 
alize all the operations of differentiation and evaluation of multidimensional integrals pro- 
grammed on the right side. In the first place, it is possible to differentiate with respect 
to r k and satisfy the condition r z = r, r 2 = r 3 = 0. Considering that the variable ~9 is not 
contained in the arguments of the Heaviside function, it is easy to evaluate the integral with 
respect_ to that variable. For integrating with respect to the variables {~i}~, i= I, 2 ..... 8, 
and {~i}, i=10, II ..... 17 it is convenient to use two sets of bipolar coordinates [16]. In this 
case the integrals can be calculated in explicit form with respect to all six angular varia- 
bles in each set. In the expression obtained (a four-dimensional integral), by going over to 
two sets of polar coordinates it is possible to evaluate the integrals with respect to two 
more varibles. The remaining double integral reduces to an iterated integral. After perform- 
ing all these rather cumbersome calculations, we arrive at the following expression for I(r, 
t): 

l(r, t ) = - - G ( r ,  t) 1-J-P~(r), (21)  
F 

where 

o (r, t) = 10-~ [I0 (~0~) 6 ( ~ )  + 11 (o~)/0 (~2)]; (22)  

1 

~(~)= 3T 2 [ P ~ ( 0 ) ~ P ; ( r ) ]  

Here, a prime denotes diferentiation with respect to the variable r: 

(23) 
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l~(mi) = ~ axexp - -  77 I - -  q---~- " " '  Mh(x), k = O, 1; i =  1, 2. (24)  
(~i 

In  (24)  we ha ve  u sed  t h e  n o t a t i o n :  

Mo (x) = x 3 q- 6x z + 24x -4- 48, (25)  

M,(x)  =- x ~ q- 8x a q- 48x z + 192x 4- 384. (26)  

Analysis of the Function l(r, t) 

With the expression for l(r, t) represented by Eqs. (21)-(26), Eq. (ii) for the function 
Pt(r) can be solved numerically, once the initial form of the function P0(r) and the values 
of the external parameters v, ~p, E, L, and T are given. 
given the form: 

~re B(0) = V . 2  q(0 ) 

The initial function P0(r) can be 

F2 t 2 Po(r )= 2rB(O) exp (27)   -Toj ' 

, where q(0) is the initial value of the turbulent velocity field fluctua- 

tion energy, and L 3 is the characteristic length scale of the initial velocity field. Together 
with the viscosity coefficient of the solvent v, the quantities q(0) and L 0 determine the ini- 
tial value of the Reynolds number 

// y q (0) Lo 
Reo = (28)  

u 

and the initial characteristic turbulent fluctuation time 

L0 
T o = r 2 . . . . . . . .  (29)  [/Tq(~ 

Together with Re0, through the function G the quantity T o enters into Eq. (ii) as an indepen- 
dent parameter. Therefore, a change in Re 0 may be accompanied by different regimes of vari- 
ation of the characteristic time To, which will lead to different results. 

We will assume that a change in the Reynolds number is achieved at the expense of a 

V change in the characteristic fluctuation velocity ~q(0) with L 0 fixed. Then, expressing 
r 

V~q(0 ) (28) in terms of the Reynolds number, for the dimensionless quantity T we obtain 

_ T _ T Reo ,  ( 3 0 )  

To To 
where 

To ~ v (31) 

represents the characteristic viscous dissipation time on the length macroscale. The time ~0 
is related to the characteristic turbulence time T o and the Kolmogoroff time scale by the fol- 
lowing expressions: 

% = To Reo = T z  Re~/2. (32)  

In (23) we go over to the dimensionless variables: 

and use the formula 

T r . ~, P ' (r /Lo) .  , ~ = _ _ ; p =  ( p ) - -  _ _  ~ _  
�9 o i 7 '  

^ R e  0 ~^ 
Po' (o) =- ~ (~ + ~), 

sLo 
(33) 

(34) 
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Fig. i. Form of the function G(Y, ~) calculated for �9 = 0.001 
and various Reynolds numbers: (a) Re 0 = I0; (b) 50; (c) i00; 
(d) 500. 

where St is the nondimensionalized rate of change of velocity fluctuation energy. This expres- 
sion can be obtained from Eq. (ii). Using (33) and (34), we can write the expression for 
~!~ in the form: 

5 

(21 Tz R e ~ ( ]  + f )  ( 3 5 )  

where 

X = P'  (~) [ ~  II, ~ = ~t ~- ~.. ( 3 6 )  
P' (o) 

Since for the chosen polymer and solvent and the given scale L 0 the p~rameter �9 is a 
concrete number, ~I~)can be calculated for each value of the numbers Re0, e, and Y. From 

Eqs. (22)-(26) and (35) it is clear that the function G depends on the variable P only 

through Y and does not vary when Y changes sign: 

O(--Y, ~= O(Y, ~. (37) 

Therefore, for a given value of the parameter ~ this function can be calculated for values of 

on the interval [0-i], for values of E on the range (0-~) and for various values of Re 0 and 
then used in solving Eqs. (ii) by choosing those values of the function that correspond to the 

^ 

values of Y and ~ realized at each specific point 0 and at the given moment of time t. 
^ 

The form of the function G(Y, ~) for various Re0, calculated for �9 = i0 -m (T = 10 -3 sec, 

= 10 -6 m2/sec, L 0 = i0 -~ m), is shown in Fig. i. It is clear from the figure that the values 

of G tend to zero as Y approaches unity, which corresponds to small values of p, i.e.,, to the 

viscous length scale interval. The function G also decreases with the dissipation rate ~. As 
Re 0 increases, so does the rate of variation with respect to these variables. The specific val- 

ues of the function G used in solving Eq. (ii) depend on the chosen value of the polymer mole- 
cule concentration Cp. As the concentration increases from zero to large values, the values of 

th~ function G to be chosen are displaced towards smaller values of the dissipation rate. 

It is clear from (35) that for very large values of Re 0 the quantities ~i and m= will 

approach zero when F=/=] and e~0. This involves an abrupt increase in the function G from 

zero to its maximum value, which, as may be seen from (22) and (24), is realized as mi § 0. 
As will be seen from the results of the calculations, when Re 0 is too large the effectiveness 
of the polymer additives is reduced. 

For a given Re 0 the quantities ml and ~2 and, consequently, the function G depend on the 
parameter ~, which is equal to the ratio of the characteristic relaxation time of the polymer 
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macromolecule T and the time scale of turbulence. For a small value of this ratio (very elas- 
tic polymer molecules or a large time scale T o ) the values of m I and m2 are large, which leads 
to a decrease in the function G and the diminution or total disappearance of the effect. When 
the value of the parameter T is too large ("soft" polymer molecules or very small scale of 
turbulence) the values of ml and m2 will be small, and the function G will reach amaximumvery 

sharply as Y deviates from unity, which will lead to an intensification of the effect. 

The analysis of the expression for G(r, t) makes it possible to draw certain qualitative 
conclusions concerning the general nature of the last term in Eqs. (ii). The function l(r, 
t), generated by the interaction of the polymer molecules and the turbulent velocity field, 
is equal to zero over theentire viscous length scale interval, where the function Pt(r) is 

linear in the variable r. From the fact that the function l(r, t) vanishes as r + 0, its neg- 
ativeness at other values of r and, moreover, from the finiteness of the function l(r, t) for 
any values of r, which is evident from (22)-(24), it follows that the role of the last term 
in Eq. (ii) reduces to the organization of turbulent energy transfer from the small to the 
large length scales. Counteracting the inertial term, it ensures a decrease in the total energy 
transfer from the large to the small length scales and thereby reduces the dissipativeness of 
the turbulent flow. From the fact that the function G(r, t) depends only on the derivative with 
respect to the variable r of the function Pt(r), and not on the function itself, it follows 
that the interaction between the polymer molecules and the turbulence is determined by the accel- 
eration field. In this case the structure of G(r, t) is such that energy transler from the large 
to the small scales can only decrease, reverse mutual energy transfer being impossible. 

From all that has been said concerning the structure of the last term of Eq. (ii) it fol- 
lows that its significance reduces to the renormalization of the expression describing the tur- 
bulent energy transfer over the length scale spectrum. 

The properties of the statistical model proposed can be analyzed in detail on the basis 
of the solution of the closed Eq. (ii). The results of solving this equation numerically in 
the steady-state case are presented in the next article. 

NOTATION 

Pt(r), function describing the length scale distribution of the turbulent fluctuation en- 
ergy; Z, velocity fluctuation gradient tensor; O(T), Heaviside unit function; B(r, t), longi- 
tudinal velocity field correlation function; fi ~ fi (x, t), random force vector field; I(r, 
t), function describing the action of the polymer additives on the structure of the function 

Pt(r); To, characteristic time of the turbulent velocity fluctuations at t = 0; S, S t, and 
^ 

e, nondimensionalized rates of injection, variation and dissipation of turbulent energy; 

= P'(p)/P'(0), �9 = T/~ 0, T o = L~/~, characteristic viscous dissipation time on the length 
scale L 0 . 
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MODEL OF STEADY ISOTROPIC FLOW WITH POLYMER ADDITIVES 

V. A. Sosinovich and V. A. Tsyganov UDC 532.5:532.135 

The results of numerically solving the equation for the function describing, the 
length scale distribution of the turbulent velocity fluctuation energy in a steady 
isotropic flow of dilute linear high-molecular polymer solution are presented. 

Introduction 

In [i] a closed equation was derived for the function Pt(r) describing the length scale 
distribution of the turbulent velocity fluctuation energy in an isotropic flow of dilute high- 
molecular polymer solution. In this equation (cf. (ii) in [i]) what is new is the closed, i.e., 
fully expressed in terms of the unknown function Pt(r) and the solution parameters, form of 
the term I(r, t), which takes into account the effect of the polymer additives on the struc- 
ture of the turbulent flow. In deriving the expression for I(r, t) the mechanism of interac- 
tion of the polymer molecules and the turbulence described in [2, 3] was used. According to 
this mechanism, the viscosity of the dilute polymer solution is selective with respect to the 
nature of the fluid motion: it is not affected by rotational motion and increases sharply when 
the motion involves tension. 

Formulation of the Steady-State Problem 

With the expression for I(r, t), represented by Eqs. (21)-(26) in [i], Eq. (ll) of [I] 
can be solved numerically, given the initial form of the function P0(r) and the parameters ~, 
v D, E, L, and T. In this article we will consider only the steady-state case, when the func- 
tlon Pt(r) does not depend on time, and the equilibrium in the flow is maintained by the bal- 
ance between energy injection and dissipation. As will be seen from what follows, in the 
steady-state case the action of the polymer additives on the internal structure of the turbu- 
lent flow can be most graphically demonstrated. 

In Eq. (ii) [i] we pass to the limit as t + ~. Using the equalities 

lira p~ (r) = p ~  (,-) ~ p (r), 
~ (i) 

lira OPt(r) _ 0 ,  lira I(r,t)~__l(r), 

we can write the equation for P(r) in the form: 

d 2v q- 2g j ' ] / T r ~ d r  '] -~r q- p(r) + vpl (r) = - - ~ -  exp ---t-7 (2)  
dr o r / 3 L~ " 

I n t e g r a t i n g  t h i s  e q u a t i o n  wi th  r e s p e c t  t o  r from 0 to  r and us ing  Eq. (21)  from [1],~ t o g e t h e r  
with the equations 

I (O)= O, 8 =  15,;dP(r) i ( 3 ) dr ~r=o 
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